Asymmetric Synthesis of Polyhydroxy Pyrrolidinonyl Nucleoside Analogues from Tartaric acid

Li Ren JIN¹*, Jian Liang YE¹, Yong XIE¹, Jiang Hong SHI¹, Pei Qiang HUANG¹ Kyeong Eun JUNG², Hong LIM²

1 Department of Chemistry, Xiamen University, Xiamen, Fujian 361005 2 Dongbu Advanced Reseach Institute, Daeduck Science Town, Taejon Korea

Abstract: Asymmetric synthesis of novel optically active nucleoside analogues **7** from natural tartaric acid is described. In the given nucleoside analogues an optically active polyhydroxy pyrrolidinonyl ring is in place of the tetrahydrofuran ring.

Keywords: Nucleoside: pyrrolidinone, asymmetric synthesis.

Modification of nucleoside is an efficient procedure to develop new potent agents against human tumor or viruses¹. More challenging is to synthesize new optically active polyhydroxy nucleoside analogues. Because of the limitation of resources, it seems a rather arduous work to synthesize optically active carbocyclic or other heterocyclic nucleoside analogues with more than two chiral carbons, though natural sugars are available starting materials to oxa-cyclic nucleosides, such as furanosyl or pyranosyl ones. In this paper, we report an efficient and general synthetic route to optically active polyhydroxy aza-nucleosides from natural tartaric acid.

The synthesis of the pyrrolidinonyl nucleoside analogues 7 is shown in scheme 1. Reflux of a suspension of L-tartaric acid in acetyl anhydride gave diacetoxysuccinic anhydride 2^2 . The anhydride 2 was treated with 2-aminoethanol (2 eq) in CH₂Cl₂ at room temperature and successively in acetyl chloride at reflux to form (3R, 4R)-3, 4-diacetoxysuccinimide 3 in 80% yield³. The excess of free amino group was kept to avoid the possible acylation of the hydroxy group by addition of the anhydride 2 to the solution of aminoethanol in dichloromethane. One mole excess of aminoethanol was used as a base which could be replaced by triethylamine. In the presence of excessive aminoethanol, 2-diacetylaminoethyl acetate was formed which could be separated from the desired product by chromatography on silica gel. Diastereoselective reduction of 3borohydride4 methanol with sodium in afforded (3*R*, 4R5R)-3,4-diacetoxy-1-(2-acetoxyethyl)-5-hydroxy-2-pyrrolidinone 4; the result obtained seems different from that given by Yuda⁵. The diastereoselectivity (about 95%) of the reduction was determined based on the ¹H NMR data of 5, which was derived from 4 via acylation of 4 with acetic anhydride/pyridine in quantitative yield. The configurational assignment of 5 was made by the observed vicinal coupling constants (J3-4=4.3Hz,

Li Ren JIN et al.

J4-5=2.2Hz). Additional support on the conclusion of the *cis*-diastereoseletive reduction of **3** with sodium borohydride comes from the evidence of the reduction of the compounds from L-malic acid⁶. Condensation⁷ of **5** with *bis*-(trimethylsilyl)uracil or *bis*-(trimethylsilyl)thymine⁸ in the presence of TiCl4 at -15 °C afforded protected pyrrolidinonyl nucleoside analogues **6** in 60% yield. The vicinal coupling constants (J3-4=4.3Hz, J4-5=6Hz) of **6** indicated the *trans*-diastereoselectivity of the condensation. The conclusion of the configurational assignment is in accord with that given by Langlois⁹, although a different result was reported by Yuda⁵. Deacylation¹⁰ of **6** with ammonia in methanol at 5°C gave the final pyrrolidinonyl nucleoside analogues **7** in 90% yield. It was detected that the acetyl group in pyrrolidinonyl ring was removed prior to that in the side chain. Completion of the deacylation was monitored by TLC (eluent: dichloromethane/methanol, 95/5).

Reagents, conditions and yields:

- (a) acetic anhydride, reflux, 2 hrs, 90%;
- (b) 2-aminoethanol/CH2Cl2, then CH3COCl, reflux, 5 hrs, 80%;
- (c) NaBH4/CH3OH, -15°C~ -5°C, 10 mins, 88%;
- (d) Ac₂O/Py, 2 hrs, quantitatively;
- (e) bis-(trimethylsilyl)uracil or bis-(trimethylsilyl)thymine/ TiCl4/ CH3CN, -20~ -10°C, 3 hrs, 60%;
- (f) NH3/CH3OH, 5°C, 3 days, 90%.

Table 1. ¹H and ¹³C NMR spectral data of the compounds

Compds	¹ H, ¹³ C NMR spectral data
2	δ (CDC(2), 2.0(c, 2) C(2), 2.10(c, 6), 2.C(2), 2.84(m, 2), C(2)OCO), 4.21(m, 1)
3	$C(\underline{DC}(3))$ 2.0(8, 5H, CH3), 2.19(8, 6H, 2 CH3), 5.64(III, 2H, CH2OCO), 4.21(III, 1H, NC <u>H</u> H), 4.32(m, 1H, NCH <u>H</u>), 5.52(s, 2H, CH in cycle)
4	$ \begin{split} &\delta \ (CDCl_3): \ 2.06(s, \ 3H, \ CH_3), \ 2.15(s, \ 3H, \ CH_3), \ 2.16(s, \ 3H, \ CH_3), \ 3.59(ddd, \ J=4.6x6.6x14.6Hz, \ 1H, \ H \ in \ chain), \ 3.74(ddd, \ J=4.6x6.5x14.6Hz, \ 1H, \ H \ in \ chain), \ 4.23(ddd, \ 4.6x6.6x11.6Hz, \ 1H, \ H \ in \ chain), \ 4.3(ddd, \ J=4.6x6.5x11.6Hz, \ 1H, \ H \ in \ chain), \ 5.08(d, \ J=2.6Hz, \ 1H, \ H^{-3}), \ 5.11(dd, \ J=2.6x4.8Hz, \ 1H, \ H^{-4}), \ 5.14(dd, \ J=4.8Hz, \ 1H, \ H^{-5}) \end{split} $
5	δ (CDCl3): 2.06(s, 3H, CH3), 2.12(s, 3H, CH3), 2.16(s, 3H, CH3), 2.17(s, 3H, CH3), 3.26(ddd, J=4.1x6.8x14.8Hz, 1H, H in chain), 3.88(ddd, J=4.3x6.6x14.8Hz, 1H, H in chain), 4.12(ddd, J=4.3x6.8x11.8Hz, 1H, H in chain), 4.36(ddd, J=4.1x6.6x11.8Hz, 1H, H in chain), 5.22(dd, J=2.2x4.3Hz, 1H, H-4), 5.34(d, J=4.3Hz, 1H, H-3), 6.23(d, J=2.2Hz, 1H, H-5)
6a	$ \begin{split} &\delta \ (\text{CDCl3}): \ 2.07(\text{s}, \ 3\text{H}, \ \text{CH3}), \ 2.17(\text{s}, \ 3\text{H}, \ \text{CH3}), \ 2.20(\text{s}, \ 3\text{H}, \ \text{CH3}), \ 2.96(\text{ddd}, \ J=2.8x6.3x14.8\text{Hz}, \\ 1\text{H}, \ \text{H} \ \text{in} \ \text{chain}), \ \ 3.98 \ \ (\text{ddd}, \ J=3.1x6.8x14.8\text{Hz}, \ 1\text{H}, \ \text{H} \ \text{in} \ \text{chain}), \ \ 4.12(\text{ddd}, \\ J=3.1x6.3x11.8\text{Hz}, 1\text{H}, \ \text{H} \ \text{in} \ \text{chain}), \ \ 4.32(\text{ddd}, \ J=2.8x6.8x11.8\text{Hz}, \ 1\text{H}, \ \text{H} \ \text{in} \ \text{chain}), \ \ 5.06(\text{d}, \ J=4.3, \\ 1\text{H}, \ \text{H}^{-3}), \ \ 5.43(\text{dd}, \ J=4.3x5.9\text{Hz}, \ 1\text{H}, \ \text{H}^{-4}), \ \ 5.9(\text{d}, \ J=8.0\text{Hz}, \ 1\text{H}, \ \text{H} \ \text{in} \ \text{uracil}), \ \ 6.24(\text{d}, \ J=5.9\text{Hz}, \\ \end{split} $
6b	1H, H-5), 7.5(d, J=8.0Hz, 1H, H in uracil), 9.6(bs, 1H, NH). δ (CDCl3): 2.05(d, J=1.2Hz, 3H, CH3), 2.15(s, 3H, CH3), 2.25(s, 3H, CH3), 2.29(s, 3H, CH3), 3.0(ddd, J=3.1x6.8x15.1Hz, 1H, H in chain), 4.08(ddd, J=3.2x7.0x15.1Hz, 1H, H in chain), 4.21(ddd, J=3.2x6.7x12.1Hz,1H, H in chain), 4.41(ddd, J=3.1x7.0x12.1Hz, 1H, H in chain), 5.15(d, J=4.3Hz, 1H, H-3), 5.53(dd, J=4.3x6.0Hz, 1H, H-4), 6.34(d, J=6Hz, 1H, H-5), 7.35(s, 1H, H in thymine), 8.9(bs, 1H, NH).
7a	δ (DMSO-d6+D2O): 2.51(m, 1H, H in chain), 3.3~3.44(m, 3H, H in chain), 3.9(bs, 1H, H-4), 4.01(d, J=6.2Hz, 1H, H-3), 5.71(d, J=8.0Hz, 1H, H in uracil), 5.8(bs, 1H, H-5), 7.53(d, J=8.0Hz, 1H, H in uracil). δ (DMSO-d6+D2O): 1.80(s, 3H, CH3), 2.63(m, 1H, H in chain), 3.3~3.5(m, 3H, H in chain),
7b	3.92(bs, 1H, H-4), 4.1(d, J=6.1Hz, 1H, H-3), 5.8(bs, 1H, H-5), 7.3(s, 1H, H in thymine). ¹³ C NMR (DMSO-d6, 500MHz) δ: 16.92, 46.79, 62.08, 74.83, 78.88, 81.57, 116.38, 140.06, 156.16, 169.22, 178.86.

The nucleoside analogues synthesized have been characterized using IR, ¹H NMR, at 500MHz and MS(ESI) as well as elemental analysis. The results of biological activity of the compounds prepared will be reported elsewhere.

Acknowledgments

We are grateful to A. R. Fund of Han-Nong Corporation, Korea; the National Natural Science Foundation of China and the Ministry of Education of China for the financial support.

References

- C. L. Propst, T. J. Perum. *Nucleic Targeted Drug Design*, Marcel Dekler Inc., New York, **1992**; D. M. Huryn, M. Okabe. *Chem. Rev.*, **1992**, *92*, 1745.
- R. L. Sheriner, C. L. Furrow Jr.. Organic Synthesis, Coll. Vol. IV, John Wiley & Sons, New York, 1963, p242.
- 3. J. M. Dener, D. J. Hart, S. Ramesh. J. Org. Chem., 1988, 53, 6025.

Li Ren JIN et al.

- J. C. Hubert, J. B. Wijnberg, W. N. Speckamp. *Tetrahedron*, **1975**, *31*, 1437; J. B.Wijinberg, H. E. Schoemaker, W. N.Speckamp. *Tetrahedron*, **1978**, *34*, 179.
- 5. H. Yuda, H. Kitayama, W. Yamada, T. Katagiri, K. Takabe. *Tetrahedron:Asymmetry*, **1993**, *4*, 1451;
 - H. Yuda, H. Kitayama, T. Katagiri, K. Takabe. Tetrahedron: Asymmetry, 1993, 4, 1455.
- 6. A. R. Chamberlin, J. Y. L. Chung. J. Amer. Chem. Soc., 1983, 105, 3653.
- 7. T. Nishitani, H. Horikalva, T. Iwasaki, K. Matsumoto, I. Inoue, M. Miyoshi. J. Org. Chem., 1982, 47, 1706.
- 8. E. Wittenburg. Chem. Ber., 1966, 99, 2380.
- 9. D. Griffart-Brunet, N. Langlois. Tetrahedron Lett., 1994, 35, 2889.
- 10. T. L. Su, B. Bennua, H. Vorbruggen, H. J. Lindner. Chem. Ber., 1981, 114, 1269.

Received 15 January 1999